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The two-dimensional flow of an unbounded rotating stratified fluid towards a link 
sink is studied. The initial-value problem of suddenly initiating the sink flow is solved 
in Laplace space for a non-diffusive, inviscid fluid using the linearized Boussinesq 
equations. The solution shows that the sink flow is established by inertiegravity 
waves radiated from the sink and that the initial development of the flow depends 
critically on the ratio of the inertial frequency, f, to the buoyancy frequency, N. For 
f < N the flow collapses to a horizontal withdrawal layer structure. The final steady 
state resembles potential flow in which the vertical axis is shrunk by a factor of f / N  
with a superimposed azimuthal velocity. Viscous, diffusive and nonlinear effects are 
studied using scaling analysis. A classification scheme based on two parameters 
delineating various force balance regimes and giving the corresponding withdrawal 
layer thicknesses is presented. The results show that under certain conditions 
rotation may cause a thicker withdrawal layer than would be observed if there were 
no rotation. 

1. Introduction 
This study aims to shed light on the nature of the flow field caused by a sink in a 

rotating stratified fluid. Specifically, the analysis examines the time development 
and final steady state of the sink flow. It is motivated by the proposition that some 
sink flows in geophysical and limnological situations may be influenced by rotation 
as well as density stratification (Imberger 1980; Whitehead 1980). One example is 
the withdrawal of water from reservoirs which are stratified and are large enough so 
that rotation may influence the withdrawal dynamics. Indeed, it has been suggested 
(Imberger 1980) that rotational effects may be responsible for the discrepancies 
between field observations of withdrawal layer thicknesses and those predicted by 
non-rotating theory. Another example is the entrainment of ambient fluid by a 
plume where the plume may be considered to act as a vertically distributed sink. In 
deep ocean convection events which involve the sinking of large masses of dense 
water, usually at high latitudes, entrainment of surrounding fluid may be on a scale 
large enough for rotation to be important (for a review of this subject see Killworth 
1983). 

It is known that the flow of a stratified non-rotating fluid towards a sink, due to 
the action of buoyancy forces, comes from a narrow layer at the level of the sink. This 
is called selective withdrawal and, given its importance to water quality in the 
reservoir withdrawal problem, is a much studied phenomenon from theoretical, 
laboratory and field studies. For a review of this subject see Imberger &, Patterson 
(1990). By analysing the initial-value problem of suddenly initiating the sink flow of 
a linearly stratified fluid contained in a horizontal duct, Pao & Kao (1974) showed 
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that the withdrawal layer is established by waves of zero frequency but finite group 
velocity travelling outward from the sink. These waves are called columnar 
disturbances or shear waves and act to modify the initial potential flow structure, 
leaving a withdrawal layer in their wake of thickness of order of the vertical 
wavelength of the shear wave. Given the analogy between the dynamics of rotating 
homogeneous fluids and stratified non-rotating fluids (Veronis 1967) similar waves 
are responsible for the vertical withdrawal layer above a sink in a rotating 
homogeneous fluid. Such vertical withdrawal layers in rotating homogeneous fluids 
have been studied experimentally, e.g. Shih & Pao (1971). Bretherton (1967) showed 
that such shear waves are responsible for Taylor column formation in rotating fluids 
and, analogously, blocking in stratified fluids. 

The combined problem of sink flow in a fluid that is both rotating and stratified 
has received little attention in the literature despite its obvious oceanographic and 
limnological importance. Axisymmetric sink flow in a rotating stratified fluid has 
been studied by Whitehead (1980) using a quasi-steady analysis and a two-layer fluid 
approximation to the stratified withdrawal problem in which the fluid in the 
withdrawal layer is of different density to the surrounding fluid. He does not study 
the time evolution of the flow from an initial quiescent state but rather considers the 
modification of an initial radial inflow, due solely to stratification, as rotation is 
turned on. Whitehead did not find a steady state but rather a withdrawal layer which 
grew in thickness like ti. Such a growth in layer thickness with time is contrary to the 
findings of this paper which considers the initiation of the sink flow from rest. 

Monismith & Maxworthy (1989) performed experiments on withdrawal from a 
rotating stratified fluid concentrating on the regime where stratification dominates 
rotation. The fluid was withdrawn via a point sink located at the end of a rectangular 
tank. A withdrawal layer formed in which fluid propagated anticyclonically around 
the perimeter of the tank. They explained their results in terms of ‘Kelvin shear 
wave ’ dynamics which are essentially shear waves modified by the effects of rotation. 
Such a theory requires the presence of the lateral boundaries in order for these Kelvin 
shear waves to exist (and hence is not applicable to the open ocean problem). They 
also found there was no withdrawal layer thickening attributable to rotation. It is 
not clear, however, whether this is a general statement about the effect of rotation 
on the withdrawal problem or a consequence of the parameter regime in which their 
experiments were performed. 

Here a much simplified approach to the problem is taken in order to understand 
some of the dynamics involved in the flow of a rotating stratified fluid towards a sink 
and consequently the possible effect of rotation on the withdrawal problem. The 
word possible is used here since the effect of side boundaries is not included in the 
following analysis. The presence of such boundaries has a significant effect on 
rotating stratified flows (e.g. Huppert & Stern 1974) and a full analysis of the initial- 
value problem incorporating them is complicated. However, it is likely that, based 
on Gill’s (1976) study of gravitational adjustment in a rotating channel, sidewall 
effects are limited to within a Rossby radius of deformation from the wall and that 
further away from the sidewall the withdrawal flow evolves as if no such boundaries 
are present. Since the eventual steady state, if any, is unknown the problem is 
formulated as an initial-value problem in which the sink flow is started up from rest. 
This is done in $2 for an unbounded, rotating, stratified fluid using linearized inviscid 
dynamics. In the spirit of Bretherton (1967) it is formulated in two dimensions for 
ease of analysis and although this configuration is difficult to achieve in the 
laboratory, the physics of the flow should be essentially the same as would be 
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observed for the axisymmetric case. The sink is represented as a forcing term in the 
conservation of mass equation and is of infinitesimal width, i.e. is represented by a 
product of Dirac delta functions. The implication is that the solution is interpreted 
as a Green's function or in a distributional sense. As will be shown, the solution 
contains spatially varying persistent oscillations as t --t 00 which are then interpreted 
as distributions and enables statements such as sin wt /w  + 7c&(w) as t --t 00 to be made. 
This is highlighted by Hendershott (1969) who studied impulsively started 
oscillations by a spherical source in a rotating stratified fluid. In his solution the 
velocity field at large times included a component which decayed like t-i and was 
attributable to the interaction of inertiwgavity waves arriving at a particular 
location from both sides of the finite-sized source. Such an effect will not be observed 
here since the sink is of infinitesimal width but, in principle, one could use an 
appropriate distribution of sources to generate the two-dimensional analogue of 
Hendershott's problem. This would involve a spatial integral, the persistent 
oscillations of which would decay according to some fractional power oft which could 
be determined by, for example, the method of stationary phase. 

Section 3 examines the case where the sink flow is impulsive and the velocity field, 
caused by the radiation of inertiwgravity waves, is derived in detail. The solution is 
then used to explain the development of the steady-state flow for a sink of constant 
strength. Section 4 includes the effects of nonlinearity, viscosity and species diffusion 
in determining the final steady state using scaling analysis in which the classification 
scheme of Imberger, Thompson & Fandry (1976) is generalized to include the effect 
of rotation. The conclusions are presented in $5. 

2. The initial-value problem 
2.1. Problem formulation and solution 

The equations governing the motions of an incompressible stratified fluid on an 
f-plane form the starting point of this study. They are (see Walin 1969) 

(2.1) 

DpT/Dt = K V ~ ~ , ,  (2.2) 

v.v = 0, (2.3) 

p,(Dv/Dt+ f k  X V )  = -VpT-pTgk+pV2V, 

where 

Here v = (u, w, w) is the velocity vector in the (z, y, z) directions, p ,  is the pressure, 
p T  is the density, p is the dynamic viscosity, K the diffusivity of the stratifying 
species, g the acceleration due to gravity and k is a unit vector in the z-direction. 

As a particular case consider an inviscid, non-diffusive fluid occupying all space 
which is stably stratified with constant buoyancy frequency N. A line sink lies at the 
origin of the (x,z)-plane aligned along the y-axis and so the properties of the fluid 
motion are assumed to be independent of the transverse (y) coordinate and therefore 
may be considered two-dimensional. See figure 1 for the geometry of the flow domain. 

Initially the fluid is at rest in this coordinate system. At time t = 0 a sink with 
strength q(t)  (volume flux per unit length in the y direction), t 2 0, is suddenly 
switched on. 

In the casef < Ninternal wave activity will first be evident on a timescale N-' after 
the sink has been turned on. This gives a natural timescale of N-' and natural 
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Line 

FIGURE 1. Coordinate system showing the orientation of the line sink. 

lengthscale ( q / N ) i .  The nonlinear advective terms may be ignored relative to 
unsteady inertial terms by requiring that distances from the sink L are such that 
L S= ( q / N ) i ,  or, equivalently, by requiring that the Froude number, F = q/NL2,  be 
small. A similar argument applies iff > N by requiring the Rossby number to be 
small. Assuming that distances are sufficiently far from the sink, i.e. F < 1, then 
(2.1)-(2.3) may be linearized, together with the above assumptions of inviscidness 
and non-diffusiveness to give 

%+WZ = - q ( t ) W 3 W ,  (2 -4 )  

Here u is the velocity component in the x-direction, w is the velocity component in 
the z-direction, w the azimuthal velocity parallel to the axis of the sink, P is the 
pressure perturbation from hydrostatic pressure and p ( x ,  z, t )  is the variation of the 
density from the undisturbed density po(z) i.e. pT = po + p ( x ,  z, t ) .  The density 
perturbation is assumed small compared to po. The sink at  the origin is represented 
by the delta function product in (2 .4 ) .  The buoyancy frequency N is defined by 
N 2  = - (g/po) (dpo/dz) and is assumed to be constant. Just after the sink flow has been 
turned on rotation and stratification have no effect since their influence is manifested 
through forces proportional to the displacement of fluid particles (Veronis 1967) 
which is zero initially. Hence, since the fluid is incompressible, the appropriate initial 
condition to use is that of potential flow and, in particular, the potential flow caused 
by a link sink. Thus at  t = 0, u = @,, w = -+z, w = 0 and p = 0, where @ = - (q(0)/27t 
arctan ( z / x ) .  Alternatively, in terms of the velocity potential, the initial conditions 
are u = $ x ,  w = $, where q5 = - ( q ( 0 ) / 2 x  log [ (x2  +z2 ) i ] .  The velocity components are 
required to vanish at infinity, i.e. u, w -+ 0 as x2 + z2 -+ co. 
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Following Hendershott (1969), the Laplace transform in the time variable of 
(2.4)-(2.8) is taken, where the Laplace transform has the usual definition : 

g(s) = JOm g ( t )  e-st dt. 

The quantity p = P - p ,  $ is introduced in order to satisfy the initial conditions. Thus 
~ ( x ,  z,  s) represents the difference between the transformed pressure perturbation P 
and the initial pressure written in terms of the velocity potential. Eliminating B and 
p from the transformed version of (2.4)-(2.8) gives 

p o ( S 2 + f 2 ) a =  -spx, (2.9) 
p0(s2+N2)m = -sjJZ. (2.10) 

The boundary conditions a t  infinity are then pz, pz + 0 as x2 + z2 + CCI. Substitution of 
(2.9) and (2.10) into the transformed version of (2.4) gives 

Since the buoyancy frequency, as defined earlier, is assumed to be constant it follows 
that the density increases exponentially with depth and can be written in the form 
po = A exp ( - P z )  where A is a reference density (density at  the level of the sink) and 
/3 = N 2 / g .  Using this form for the density and multiplying the above equation by 
(s2 + f 2 ) / s  the following equation for p is obtained : 

(2.11) 

The Boussinesq approximation is now made by requiring that vertical distances H 
from the sink are such that N 2 H / g  < 1 (Hendershott 1969). If the vertical coordinate 
is scaled by H then the ratio of the third to second term on the right-hand side of 
(2.11) is PH = N 2 H / g ,  which is assumed to be small in the Boussinesq limit. For a 
typical reservoir operation PH = O( lop3). 

Given the above restrictions (2.11) reduces to, in the Boussinesq limit, 

(2.12) 

where now po is the density at the level of the sink, i.e. po = A .  Equation (2.12) can 
be rescaled into Poisson’s equation by letting 

for which (2.12) becomes 

(s2+ f 2)i(s2+N2)t  
&4 

S = Po m (2.13) 

using the property S(ax) = iS(x)/lal (Carrier, Krook & Pearson 1966, p. 320). It should 
be noted that the solution to (2.13) is not unique up to a constant function of s (e.g. 
Davies 1978, p. 162). However, since the constant is a function of s only then Px and 
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pz, and hence the velocity components, are unique. Ignoring then the undetermined 
function of s, the solution to (2.13) is well known (e.g. Davies 1978, p. 164) and is 
given by (in terms of the original variables x and z )  

(2.14) 

The velocity components (in Laplace space) can be found from (2.9) and (2.10) and 

Further using (2.6) the transformed azimuthal velocity is determined : 

(2.15) 

(2.16) 

(2.17) 

The density perturbation p can be calculated from (2.8) using (2.16). The above 
solution can be used to generate, via the method of images, various flow 
configurations in the same way that source/sink solutions are used in potential flow 
theory to, for example, find the velocity field for potential flow around a circular 
cylinder. An example of this is presented in McDonald (1990) which describes the 
circulation induced by the entrainment of a plane plume in a rotating stratified fluid, 
where the plume is represented by an appropriate distribution of sources and sinks. 

It is a simple matter to check that the velocity components (2.15)-(2.16) satisfy 
the initial conditions. For small times s >> f, N in which case the Laplace inversion 
yields, for the horizontal velocity, 

q(0) x u(x, z,O+) = -- - 
2R x2+22‘ 

(2.18) 

This is just the horizontal component of the velocity field for potential flow induced 
by a line sink in two dimensions. Similarly it can be shown that the vertical velocity 
w is also equivalent to that caused by a line sink in potential flow and further v-+ 
0 in this limit. In principle, for a given q(t) ,  the Laplace inverse of the above can be 
performed to give the time-dependent velocities. Before a discussion is given on 
inverting the above transforms for a particular q(t), it is possible to deduce several 
properties of u, v and w in various special cases. 

2.2. Equal rotational and stratiJcation eSfects 
When both rotational and buoyancy effects are equal in magnitude (i.e. f = N )  the 
transformed velocities simplify considerably and inversion is a simple task. Putting 
N = f into (2.15)-(2.17) and carrying out the inversion yields 

(2.19) 

(2.20) 

(2.21) 
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(4 (b) 

FIGURE 2. ( a )  The initial displacement of a fluid particle a small distance 7 at an angle 0 below the 
horizontal as it is drawn towards the sink. ( b )  The resulting vertical force due to stratification and 
horizontal force due to rotation. The dashed lines indicate the components of the rotational and 
stratified induced forces in a direction perpendicular to the initial displacement. The resultant force 
perpendicular to the original path is (N2 -f2) 7 cos 8sin 8. 

where the integral in (2.21) is required to be bounded as t --f 00, which implies that the 
amount of fluid removed by the sink is finite. This represents potential flow due a line 
sink of varying strength q( t )  in the (x,z)-plane with a superimposed azimuthal 
velocity parallel to the sink given by (2.21). This azimuthal velocity, or swirl, is a 
consequence of the conservation of angular momentum since as a fluid particle 
approaches the sink it must increase its swirl velocity in order to keep its angular 
momentum constant. 

The above result can be explained by considering the forces acting on an individual 
fluid particle. A fluid particle in a stratified fluid of constant buoyancy frequency N 
when displaced a small vertical distance Az experiences a restoring force per unit 
mass of F, = -N2Az. By analogy, a particle in a rotating fluid displaced a small 
distance Ax horizontally experiences a restoring force per unit mass Fz = - f Ax (see 
figure 2). Thus for a rotating stratified fluid, a particle displaced a small distance 7 
at an angle 8 to the horizontal experiences a transverse force to its path of magnitude 
F = (N2  -f2) 7 cos 8 sin 8. Hence iff = N there is no transverse force acting on the 
particle and so there is no deviation from its initial path, which in this case is the 
potential flow pattern. 

2.3. Zero rotation 

If the fluid is stratified but not rotating then f = 0 and so by (2.17) v = 0 and the 
other velocities become (in Laplace space), after some rearrangement, 

- 1  ( s2+N2) i  sx 
2R x2 + 22 2 2  + 6.P ’ a = -q(s) 

- 1  ( s2+N2) i  sz 
2R 2 2  + 2 2  s2 + 0 2 ’  

rn = -q(s) 

(2.22) 

(2.23) 

where u2 = N2z2/(x2+z2). Choosing q(t)  = qH(t) ,  which represents a sink of constant 
strength so that q(s) = q / s ,  the Laplace transform portion of (2.22) can be written as 

1 N 2 - W 2  + - (82+N2))  - 
s2 + w2 (s2 +N2) i  (s2 +N2)i(s2 + u2) ‘ 

Applying the convolution theorem of the Laplace transforms the above can be 
inverted to give the following time-dependent horizontal velocity : 

sin [w(t - T ) ]  J,(NT) d7 
-Q x N 2 - W 2  

2R x 2 + 2  
u(x, z,  t )  = - - k o ( N t )  + 
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where J ,  is the zeroth-order Bessel function. This solution is identical to that 
obtained by Koh (1966 b )  for the two-dimensional sink flow of stratified non-rotating 
fluid. In the limit t --f 00, (2.24) reduces to (ignoring decaying oscillations) 

- q  x N 2 - d  
u(x , z ,  t )  = - - ~ lim I: sin [w(t  - 7 ) ]  J,(N7) d7 

2x x 2 + 2 2  w t*m 

sin wt 
( N ~  - w2)t lim - . - - q  x 

2x x 2 + 2 2  t-m w 
(2.25) 

If the velocity field is interpreted as a distribution in the limit t + 00, then 

sin wt/w + xB(w),  

where 6 is the Dirac delta function, and hence u + -&aS(z) (the factor of $ arises since 
there are two oppositely directed jets for x < 0 and x > 0). The vertical velocity 
vanishes in the same limit. Thus according to linearized theory, in the absence of 
rotation the flow of an inviscid, non-diffusive stratified fluid eventually collapses to 
a horizontal line jet a t  the level of the sink, a conclusion also reached by Koh (1966b). 

3. Transient nature of the sink flow 
Equations (2.15) and (2.16) suggest the existence of the following stream function: 

where ti = gr and iii = -3,. For large times such that t %- f - l , N - l ,  then s 6 f , N  
the inversion of the above transform becomes straightforward. For the case of 
constant sink strength, i.e. q(t)  = qH(t)  the inversion yields the stream function 

$(x, z )  = arctan El. 
2x 

Thus the presence of both rotation and stratification imply that, after times large 
compared to both the inertial and buoyancy periods, a steady state in the (2, 2)-plane 
is reached. This is in contrast to the case when there is no rotation where i t  was shown 
that the flow towards the sink keeps collapsing indefinitely. Further, a t  this steady 
state if the horizontal lengthscale is given by L then it follows from the above stream 
function that the vertical lengthscale, 6, is given by 6 = f L / N .  Hence the vertical 
lengthscale grows linearly with horizontal distance from the sink. Superimposed on 
the steady-state stream function is, from (2 .6) ,  a swirl velocity v which increases 
linearly with time, i.e. v - NtqlL.  Similarly from (2.8) the density perturbation p 
increases linearly with time. Given this increase in v the linear equation (2.6) (and 
(2 .8))  remains valid until vt - uv, or until times such that f t  - F-l ,  which is large by 
assumption. 

The approach to the steady state described above is examined in detail in the 
following section by carrying out the Laplace inversions in detail and the transient 
behaviour is interpreted in terms of inertio-gravity wave radiation by the sink. 

3.1. General solution 
The behaviour of a rotating fluid is examined for the case of a sink of constant 
strength q which is suddenly turned on a t  t = 0. Thus q( t )  = qH( t ) ,  where H ( t )  is the 
unit step function, and hence q ( s )  = q / s .  In order to find the resultant velocity field, 
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for this choice of sink behaviour, the task is to carry out the inverse Laplace 
transform on a where 

and w2 = ( f 2 x 2 + N 2 z 2 ) / ( z 2 + z 2 ) .  Similar inversions are required to fmd the other 
velocity components. It will be assumed from here on that f < N ,  as is the case in 
most oceanographic and limnological situations. By symmetry, if f > N then the 
following results still apply withf and N ,  and x and z interchanged. Note also that, 
from the definition of w ,  it  follows that f < w d N for all x and 2. 

Writing 

the inverse of (3.1) may be obtained using the result (2.24) and the convolution 
theorem for Laplace transforms. Applying standard results for inverting Laplace 
transforms the result is 

(o(t--7)]JO(Ah)d7 
w 

where &(t )  is the Dirac delta function, J1 is the first-order Bessel function and * 
denotes the convolution operator, which for two functions f(t) and g ( t )  is defined by 

g*f  = J-+f(t-7)d-7. 

For times small compared to the inertial period, jl< 1 the left-hand side of the 
convolution reduces to the delta function and (3.2) becomes identical to (2.24). This 
implies that initially the sink flow proceeds like that in the absence of rotation : that 
is, the initial potential flow proceeds to collapse to a horizontal withdrawal layer 
structure due to the action of buoyancy-induced forces. This collapse continues until 
time t -f-l when the other terms on the left-hand side of the convolution can no 
longer be ignored, i.e. when rotational effects become important. For even larger 
times, such thatj t  % 1 (and hence, by assumption, Nt 9 l), it can be shown from (3.2) 
that a steady-state velocity field is obtained in the (x, 2)-plane. This steady state will 
be discussed in more detail later in this paper. 

Although mathematically precise, the temporal evolution and eventual steady 
state of the sink flow described by (3.2) is physically unclear. The next section 
examines the development of the flow in the context of inertio-gravity wave 
radiation by the sink. In particular the radiation of waves by an impulsive 
disturbance (i.e. sink strength represented by a Dirac delta function) is studied and 
these results are used to discuss the time development of sink flow with a sink of 
constant strength. 

3.2. Impulsive disturbance 
The response of a rotating stratified fluid is examined in detail when q(t)  = qS(t) ,  
which corresponds physically to switching on and off the sink if a very short space 
of time. Specifically, the velocity field is examined at large times after this event, i.e. 
times larger thanf-'. With this choice of sink flow and realizing that the Laplace 
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transform of the delta function is unity, in order to find u it is required to evaluate 
the contour integral given by 

ds. 
(s2 + f 2)$(s2 +N2)i 

est 
S2 + 0 2  

(3.3) 

The integral can be evaluated by closing the contour a t  infinity and evaluating the 
contributions to the integral from the enclosed singularities. However, since the 
transform part of the integrand in (3.3) tends to a constant as s+oo there is a 
contribution to the integrand by the contour at infinity. This is of the delta function 
type and is not important for large times and is therefore ignored. Alternatively, the 
problem can be avoided by letting q( t )  = q[H(t ) -H( t -a)] /a ,  evaluating the inverse 
transform, and then taking the limit a + 0. The integrand has simple poles at s = & iw 
and branch points at s = +if and s = f iN. 

It is shown in the Appendix that the parts of the contour integral involving the 
branch cuts a t  f f l  and &if represent decaying oscillations at  the buoyancy and 
inertial frequencies respectively which behave like t-g for large t. Therefore at large 
times (t 9f-l) the main contribution to the integral comes from the simple poles a t  
s = fiw. To find this contribution the residues a t  s = are calculated, where 
the poles have been written in exponential form to avoid the ambiguity that occurs 
when branch points exist. The residue calculation is straightforward and the 
following velocity components are obtained : 

- qx (N2 - w2)i(w2 - f2)4 
u(x, 2 ,  t )  = cos (wt ) ,  

27c(x2 + 22)  w 

-qz ( N 2  - w2);(w2 -f2)i 
w(x, 2,  t )  = cos (wt ) ,  

27c(x2 + 2 2 )  w 

fqx Ff+ ( N 2  - w2)i (w2 -f2): 
w(z,z,t) = 

27c(22+22) w2 w2 

(3.4) 

(3.5) 

Thus the impulsive disturbance sets up an oscillation in the (x,z)-plane with an 
azimuthal velocity parallel to the sink. The oscillations are a result of inertio-gravity 
waves of local frequency w being radiated by the sink. The frequency w can be written 
in polar coordinates as w2 = f cos2 8 + N 2  sin2 8, where 8 is the angle from the x-axis 
to the point of observation. The wavefronts are in the radial direction 8 = constant 
and the lines of constant phase, given by 4 = wt,  are straight lines fanning radially 
out from the origin. On the constant-phase lines as time increases, w and hence 6 (for 
f < N )  must decrease accordingly. It follows that the lines of constant phase rotate 
towards the horizontal axis in all four quadrants. Stevenson (1973) experimentally 
observed similar behaviour of constant-phase lines when a cylinder is made to 
undergo an impulsive displacement in a stratified non-rotating fluid. 

Since for inertio-gravity waves group velocity is perpendicular to the phase 
velocity, it follows that energy is propagated radially from the sink. The wavenumber 
of the oscillations is given by 

A point a t  which a given wavenumber is found moves radially out with velocity 

cos 8 sin 8(N2 - f 2, 

wk 
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This is the group velocity for a wave in a fluid rotating with angular velocity 4 f and 
stratified with buoyancy frequency N (see e.g. Gill 1982). 

From (3.8), by maximizing the group velocity with respect to 0, the maximum 
group velocity or energy radiated occurs along the line z = (f/N)ix and is carried by 
waves of frequency w = (jN)f. This also corresponds, not unexpectedly, to the 
maximum amplitude of oscillation of the fluid particles. The ratio f / N  is thus of 
critical importance in determining the direction at  which the maximum amount of 
energy is radiated. As f + O  an increasing percentage of the energy radiated by the 
sink is concentrated along the horizontal axis and is carried by waves of decreasing 
frequency. Only when f = 0 (i.e. when the fluid is not rotating) is the (maximum) 
energy carried at vanishing frequencies along the horizontal axis. The properties of 
such waves are discussed in detail in the context of Taylor column formation in a 
rotating homogeneous fluid in Bretherton (1967). 

3.3. Maintained sink $ow 
Consider now a maintained sink flow in which q(t) = qH(t). A similar residue 
calculation is performed as in the previous section for the poles at  s = k iw as well as 
the additional pole at s = 0. As before the contribution of the decaying oscillations 
(now - t-i) represented by the branch points at  5 = if, k iNis ignored. The velocity 
components are 

W =  
w2 

(N2 - w2)i(w2 - f 2))" 

w3 
V =  

(3.10) 

(3.11) 

Consider also a similar calculation for the case of a non-rotating fluid in which f = 0. 
In this case there is no pole a t  s = 0 and the residue calculation yields 

(3.12) 

There is a similar expression for the vertical velocity w, and v = 0. Consider the 
behaviour of (3.12) for large times. If, in the limit t + m, sinwt/w is interpreted as a 
distribution, i.e. sin wt/w + nB(w) then (3.12) reduces to (2.25) and thus the velocity 
field evolves into a line jet along the z-axis. Treating the velocity field (3.9)-(3.11) as 
distributions thus provides a convenient way of interpreting their behaviour at  large 
times. 

Consider the case when both rotation and stratification are present. Interpreting 
these velocity fields as distributions as t + 00 both cosot and sinwt + O  since now 
w > 0. Thus the u and w velocities eventually approach steady state because there are 
no waves of zero frequency. It is the presence of the low-frequency cutoff f in the 
rotating case which is the cause of the difference to the non-rotating case. 

This result can be explained in terms of radiation of inertio-gravity waves. First 
the case of no rotation is considered and is then contrasted with the case when both 
rotation and stratification are present. In the absence of rotation the phase of 
the internal waves, from (3.7), is given by g5 = NtsinB and the wavenumber k = 
Nt cos Blr .  Thus for a maintained source of internal waves, at any location in space not 
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FIGURE 3. Horizontal velocity profiles at different values of the ratio f / N  at a horizontal distance 
L from the sink: f / N  = 1.0 (-), f / N  = 0.5 (---), f / N  = 0.2 (. . 1 * .). The velocity has been non- 
dimensionalized by ql21tL and x and z by L. 

on the x-axis (i.e. B 8 0) waves emitted by the sink of all phases and wavenumbers will 
eventually be observed. These waves will destructively interfere (Bretherton 1967) 
and the velocity field approaches a steady value. At  B = 0 only waves of the same 
phase ($ = 0) will be observed arriving with successively smaller wavelength and 
constructive interference will occur. The velocity then increases with time along B = 
0 eventually giving a delta function type velocity field. When both rotation and 
stratification are present, $ = wt, and nowhere is there a location where the phase of 
each wave arriving is the same, since w > 0. Further from (3.7) the full range of 
wavenumbers will be observed at  any given location. Hence destructive interference 
occurs and a steady state in the (z, 2)-plane will eventually be observed. This steady 
state forms at  times such that wt 9 1 or t $ f-' since the minimum inertio-gravity 
wave frequency is the inertial frequency. 

The nature of the steady-state flow can be visualized by noting that in a coordinate 
frame in which the vertical axis is stretched by a factor of f / N  the streamlines are 
identical to that caused by a sink in potential flow. Figure 3 shows the steady-state 
horizontal velocity profiles given by (3.9) at large times for various values of f / N .  
There is an increasing tendency for a well-defined narrow jet to form as f / N  decreases, 
i.e. as stratification dominates over rotation. In the limit f / N + O  the horizontal 
velocity collapses to a line jet as expected. 

It has been shown that the flow of an inviscid, non-diffusive, rotating &nd stratified 
fluid towards a sink collapses to a horizontal withdrawal layer structure iff < N. For 
f > N the withdrawal layer is vertical. The eventual steady state is dependent on the 
ratio f / N .  However, real fluids are viscous and the Froude number is finite, meaning 
that in the flow of a stratified non-rotating fluid towards a sink eventually either the 
effects of viscosity, diffusivity or nonlinearity, or a combination thereof, become 
important. The importance of rotation on the withdrawal problem for a real fluid 
may then be judged on the relative sizes of the withdrawal layer thicknesses 
produced by a balance between stratification and either viscous, nonlinear or 
rotational effects. This is done in the next section through the use of scaling analysis. 
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4. Viscous and nonlinear effects: scale analysis 
In this section scales are obtained for withdrawal layer thicknesses and a 

classification scheme derived for the associated force balance regimes for the flow of 
a rotating stratified fluid into a line sink. Equations (2.1)-(2.3) form the starting 
point of the scaling analysis. As before the fluid is unbounded and is withdrawn 
through a link sink (in the y-direction). Hence there is no dependence of the flow 
variables on the transverse y-coordinate. It is further assumed that all flow variables, 
in particular v and p have reached steady state. The fluid is stratified with constant 
buoyancy frequency N. The Boussinesq approximation is used, i.e. the density term 
multiplying the inertial terms is approximated by the density a t  the level of the sink, 
i.e. po(z)  = po(0).  The perturbation to the undisturbed density profile po(z) induced by 
the motion is denoted by p(z, z, t )  and it is assumed that IpJ Q po. Conservation of mass 
(2.3) enables the introduction of a stream function $ defined by u = $z, w = -$z. 
Eliminating the pressure from (2.1) the equation for the azimuthal vorticity, V2$, is 

where J is the Jacobian operator defined by J(a, b)  = a,b,-bzaz and v is the 
kinematic viscosity defined by v = ,u/p,(O). The letters used to identify various terms 
are for later convenience. The equations for the azimuthal momentum and 
perturbation density may also be written in terms of the stream function, yielding 

and (4.3) 

Only the case f < N is considered here, as it represents most naturally occurring 
systems. This means that, as shown in the previous section, stratification initially 
dominates over rotation and the initial potential flow collapses to a horizontal 
withdrawal layer structure. As the flow collapses the vertical lengthscale decreases 
and so diffusion of momentum and species becomes more important. Further, the 
induced horizontal velocity in the withdrawal layer increases as the layer becomes 
narrower, meaning that inertial effects become more important. Thus the effects of 
nonlinearity and diffusion of vorticity and species are included and these will be 
important in determining the final steady-state structure. The balance which occurs 
at  steady state depends on the relative magnitude of the nonlinear, Coriolis and 
viscous terms in the vorticity equation. In order to find the conditions under which 
various balances apply it is assumed that the baroclinic production of vorticity term 
[c ]  is dominant since this is the term responsible for the formation of the horizontal 
withdrawal layer. As the flow collapses to a horizontal jet structure the terms [a], [b] 
and [d ]  in the vorticity equation increase in magnitude until one of these terms 
balances with [c] at steady state. Further, it is assumed that at  steady state the 
vertical lengthscale S (the scale for the withdrawal layer thickness) is much smaller 
than the horizontal lengthscale L,  i.e. S Q L. This means that the Laplacian, V2, and 
biharmonic, V4, operators in (4.1)-(4.3) can be approximated by a2/az2 and a 4 / ~ z 4  
respectively. 

Imberger et al. (1976) derived a classification scheme for the above problem for the 
case when f = 0 based on shear wave dynamics. Such waves were of vanishing 
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frequency but non-zero group velocity and definite modal structure because of being 
contained in a domain that is bounded in the vertical. When the withdrawal flow is 
initiated the initial potential flow is modified by shear waves propagating away from 
the sink leaving the withdrawal layer structure in their wake. A steady-state 
withdrawal layer is achieved when either the shear waves are unable to propagate 
against the withdrawal current or the shear waves are diffused by the action of 
viscosity. For a sink of strength q and a fluid with kinematic viscosity v, in order to 
distinguish between the two cases they introduced the parameter 

R = FGri, 

where F is the Froude number which measures the relative strengths of inertial and 
buoyancy effects and Gr = N2L4/v2 is the Grashof number which measures the 
relative strengths of buoyancy and viscous effects. Thus R measures the relative 
strength of terms [a] and [d].  The following scales for the withdrawal layer thickness 
were found by Imberger et al. (1976) : 

if R >  1 then SIL- Fi ,  (4.4) 

or Pr-i < R < 1 then S/L - Gr-i&, (4.5) 

or R < Pr-9 then S/L - Gr-iPr-4, (4.6) 

where Pr = V / K  is the Prandtl number which is assumed to be of order greater than, 
or equal to, one. 

The parameter R is also used in this study. When rotation is included in the 
analysis a further parameter is required to delineate the extra possible force 
balances. It was shown in $3  that if the horizontal lengthscale is L for a balance 
between buoyancy and rotation then the vertical lengthscale is S = fL/N.  That is, if 
the flow of a stratified rotating fluid towards the sink is in a thermal wind balance 
then the withdrawal layer thickness increases linearly from the sink. Imberger et al. 
(1976) (for Pr = O(1)) showed that, in the absence of rotation, the withdrawal layer 
thickness is constant from the sink if buoyancy balances inertia, or increases like Lg 
if buoyancy balances viscosity. The growth of the withdrawal layer thicknesses in the 
various force balance regimes is shown schematically in figure 4. A convenient 
parameter to use to delineate various possible force balance regimes is one that 
measures the relative withdrawal layer thicknesses of the buoyancy-viscosity and 
the buoyancy-rotation balances. Such a parameter is 

Hence y > 1 means that the rotation-induced layer thickness is larger than that of 
the viscous layer and rotation may have a significant effect on the withdrawal 
dynamics (depending on the magnitude of the inertial layer which may be larger 
still). For y < 1 rotation will have no effect since the viscous withdrawal layer is 
always of greater thickness than the rotational layer. 

The parameter y may also be interpreted in terms of timescales by writing 

N - ~ G ~  y = fGr8  = -. 
N f -l 

This expression for y may be interpreted as follows : the initial collapse proceeds as 
if there were no rotation and so from $3  the time taken for a given wavenumber k 
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(4 (b )  j (4 ' i (4 

FIQURE 4. Idealized withdrawal layer, showing different rates of growth in each of the different 
force balance regimes : (a) potential flo,w, buoyancy unimportant ; (b) inertial-buoyancy regime, 6 
constant ; ( c )  viscous-buoyancy, 8 - x3; ( d )  rotational-buoyancy, 6 - x. 

y >PA R > ya 8 - (q/N)k (i) 
y-: < R < y p  8 - L f / N  (ii) 

8 - L(q/u)  (f ,/y) (iii) 
8 - L (  f / N )  Pr- (iv) 

8 - Lf /N  

y-'Pr- < R < y-' 
R < y-lPr-4 

l < y < P r i  R > y2 8 - ( q / N ) i  
y-: < R < ya 
y-; < T < y-1, 

Pr- < R < y-Tb 

Y < l  R > 1  8 - (q /N) i  

8 - L ( q / v )  (f :IN*) 
8 - (vq$/NZ)r (v) 

R < PT- 8 - ( u K ) ' ( L / N ) ~  (vi) 

8 - (vqL/N2)i 
8 - ( u K ) ~ ( L / N ) ~  

P d  < R < 1 
R < P T ~  

TABLE 1. The various force balance regimes 

to reach a given location (r,  8) is given by t = kr/Ncos8. Consider a point of 
observation on the horizontal axis with r = L and 8 = 0. Then t - kL/N. The time 
taken for a wave of wavenumber k to diffuse through the action of viscosity is given 
by t - l / k 2 v .  Combining these gives an estimate for the viscous decay time of t - 
N-lGri for an internal wave to decay at a distance L from the sink. Now t - f is the 
time for rotational effects to become important and thus y is the ratio of these two 
timescales. Thus for y > 1 the effect of rotation is felt before the internal waves 
radiated by the sink have had time to dissipate, and vice versa for y < 1. 

Scales for the withdrawal layer thickness, 8, arise from balancing [c] with [a], [b] 
or [d] and requiring that the remaining terms in the vorticity equation are small. 
Scales for the azimuthal velocity come from balancing [f] with either [el or [g] and 
scales for the density perturbation come from balancing [i] with either [j] or [h]. The 
Prandtl number is assumed to be large. The scales may be split into three groups 
depending on the relative magnitude of y and Pr and are shown in table 1. 

The six possible different scales for the withdrawal layer thickness are indicated in 
table 1 by (i)-(vi). A convenient way to visualize the above scales is on a log-log (base 
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log Y 
FIQURE 5. Log-log plot of y versus R,  for Pr = 7.86, identifying the various force balance 

regimes. The location of the Wellington Reservoir is indicated by a (+ ). 

e) graph as in figure 5 (with Pr = 7.86) which shows a plot of logy versus logR. The 
various withdrawal layer thicknesses are indicated in the plot. 

From the above table and figure 5 the system can be divided into six regimes, 
(i)-(vi), each yielding a different scale for the withdrawal layer thickness. Therefore 
the inclusion of rotation and the effect of large Prandtl number result in a further 
three layer thicknesses in addition to the three non-rotating scales found by 
Imberger et al. (1976). Note that when f = 0 then y < 1 and the scales reduce to the 
non-rotating scales (iv)-(vi) as expected. Note also that in the regimes which involve 
rotation, the withdrawal layer thickness always grows linearly from the sink. This 
linear growth is faster than the non-rotating cases of constant inertial withdrawal 
layer thickness (iv) and the Li growth of the viscous withdrawal layer (vi). Thus 
rotation, within the assumptions of this theory, will thicken the withdrawal layer a t  
sufficiently large distance from the sink. The scales (i), (v) and (vi) when rotation is 
not important in determining the withdrawal layer thickness are discussed elsewhere 
in the literature. In particular, the scale (i) (convective-buoyancy balance) is the 
inner solution and (vi) (viscous-buoyancy balance) is the outer solution of Imberger 
(1972) who solved the problem of a stratified fluid flowing towards a sink in 
horizontal duct. Koh (1966~) also discusses the viscous-buoyancy balance (vi) for a 
fluid of infinite extent. The scale (v) is applicable for fluids of large Prandtl number 
in which convection of the stratifying species (but not momentum) is important in 
determining the withdrawal layer thickness and is discussed in Imberger et al. (1976). 
However, in the regimes (i), (v) and (vi), due to rotation there is now a superimposed 
azimuthal velocity of magnitude O(fL), O(fLR)) and O( fLRPr-i) respectively. 

A discussion of the new scales, where rotation is important, is given below. 
(ii) S - ( f / N )  L .  The withdrawal layer thickness increases linearly from the sink 

and is proportional to the ratio of the inertial to buoyancy frequencies. The balance 
in the vorticity equation is [c] - [b ] .  In other words baroclinic production of vorticity 
balances the production of vorticity due to the Coriolis force, i.e. the thermal wind 
balance. The scale for the azimuthal velocity comes from [el - [f]. That is the 
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production of azimuthal velocity which is O( fL) as fluid moves towards the sink is 
balanced by advection of azimuthal velocity by the mean flow in the (z,z)-plane. 
Similarly, in equation (4.3) [i] - [h], which states that the displacement of the 
isopycnals is due to advection by the vertical velocity. The density perturbation is 

(iii) 6 - ( y j 2 / v N 2 ) L .  The withdrawal layer thickness increases linearly from the 
sink. The vorticity equation is in thermal wind balance. The scale for the azimuthal 
velocity comes from [ g ]  - [ f ] .  That is, the production of azimuthal velocity which is 
O(R2y2fL) as fluid moves towards the sink is balanced by diffusion of azimuthal 
velocity by viscosity. In the density perturbation equation the balance is [i] - [h] 

(iv) 6 - (flJ7)LPr-Z. The withdrawal layer again increases its thickness linearly 
from the sink. The vorticity equation is in thermal wind balance. The production of 
azimuthal velocity by the mean horizontal flow is balanced by viscous diffusion, i.e. 
[ g ]  - [f] and v - (RyPr-YL). The density equation is dominated by the diffusion of 
the stratifying species, i.e. [i] - [ j ]  and p - po(N2L/g)  ( f / N ) R y .  

The results of this section are now discussed with reference to the reservoir 
withdrawal problem. As an example illustrating the above scales consider the field 
data reported in Ivey & Imberger (1978) for the Wellington reservoir. They found 
that the measured value of the withdrawal layer thickness was greater than that 
predicted using non-rotating link sink theory. They explained this discrepancy by 
the fact that they used laminar values of viscosity rather than the appropriate 
turbulent viscosity. Another explanation is that point sink theory (Ivey & Blake 
1985) is more appropriate given the fact that reservoir offtake structures more 
closely resemble point sink. This paper raises the third possibility that withdrawal 
layer thickening may be due to rotational effects. The horizontal lengthscale is taken 
to be L = 5 km from the offtake. The relevant data are N =  0.022 s-l, v = 
1.1 x This yields R = 1.5 
and y = 26. Figure 5, which shows the location in parameter space of the Wellington 
reservoir, indicates that 6 - ( f / N )  L, giving 6 - 16 m at a distance of 5 km from the 
offtake. Even though this relation is only an order of magnitude estimate (i.e. there 
is an O( 1) constant multiplying this estimate) such an estimate of 16 m is clearly too 
large when compared to the measured value of the withdrawal layer thickness of 
about 3 m (Ivey & Imberger 1978). This implies that line sink theory is inappropriate 
for the Wellington reservoir when it is generalized to include rotational effects. The 
problem arises from the fact the reservoir is a bounded basin. In particular, if one 
treats a reservoir as a narrow channel, the effect of sidewalls perpendicular to the y- 
axis are of significance in the reservoir problem since, as shown by Gill (1976), they 
may be sufficiently close together that rotational effects are limited by the zero- 
normal-velocity (i.e. v = 0) boundary condition on the walls. Indeed in the limit that 
the channel width goes to zero Gill showed that rotational effects are negligible. The 
withdrawal of a stratified fluid from a rotating channel of finite width is currently 
being investigated by the authors. 

P - Po(N2L/g) (f/N). 

and P - Po(N2Jm) (f/y@. 

m2 s-l, Pr = 7.86, q = 0.013 ms-l andf/N = 3.3 x 

5. Conclusions 
The solution to the initial-value problem for a line sink in an unbounded, inviscid, 

non-diffusive, rotating and stratified fluid is obtained in the zero-Froude-number 
limit. The solution shows that forf < N the flow collapses to a horizontal withdrawal 
layer structure, the eventual steady flow stream function of which depends on the 
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ratio f / N .  In addition there is a superimposed azimuthal velocity and density 
perturbation which increases linearly with time. The approach to steady state can be 
interpreted in terms of the superposition of inertio-gravity waves radiated by the 
sink which arrive a t  a particular location with ever decreasing wavelength. The 
existence of a steady state can be attributed to the presence of both stratification and 
rotation which precludes energy being radiated by the sink at vanishing frequencies. 

For a real fluid (i.e. a fluid governed by the full NavierStokes equations) in which 
f < N the flow collapses to a horizontal withdrawal layer structure where the collapse 
is eventually halted by either rotational, nonlinear or viscous and diffusive effects. 
These effects are incorporated using scaling analysis. For y = ( f / N )  Gri < 1 rotation 
has no effect on the withdrawal layer thickness. For y > I the withdrawal layer 
thickness depends on the relative magnitude of R,  y and Pr. 

For the case when buoyancy balances rotation the steady-state aspect ratio of f / N  
of the withdrawal layer obtained here was also obtained by Gill (1981) for the aspect 
ratio of intrusions in rotating stratified fluid. Gill started with the steady equations 
of motion and took advantage of the fact, as seen here, that the steady state is closely 
related to potential flow to generate his solutions. This aspect ratio has been observed 
recently by Rosenblum & Marmorino (1990) as that determining the thickness of 
layers of turbulence in the ocean. 

The authors thank G .  N. Ivey and S. G. Schladow and the anonymous reviewers 
for helpful comments on earlier versions of this article. One of us (N. R. M.) has been 
supported by an Australian Postgraduate Research Award. 

Appendix. Transient behaviour represented by the branch points 

I is examined where I is given by 
Here the contribution of the branch points at 5 = -t if and 5 = f iN to the integral 

First consider the branch points a t  5 = &if. The complex plane can be cut twice 
from 5 = - GO to 5 = 0 and the Laplace inversion contour can be wrapped around 
these cuts as shown in figure 6 (a).  Consider first the branch cut located a t  5 = ifwhich 
is surrounded by the contour Wl. The origin is shifted by introducing the variable 
6 = s - if and so the contribution of this branch cut is 

To integrate around the branch cut the integral is split into three parts, namely (see 
figure 6 b )  ( a )  counterclockwise around the circle of radius r from -n to R ;  ( b )  below 
the cut the substitution 6 = xePix is made where x : GO --f r ;  ( c )  above the cut introduce 
6 = xeix where x : r + GO. The contour shown in figure 6 ( b )  shrinks onto the branch cut 
in the limit r + 0. It is straightforward to show that the contribution to the integral 
I1 around the circle radius r centred a t  5 = if vanishes in the limit as its radius tends 
to zero. Making these substitutions and after some algebra I I  becomes 

(A 3) 
e-zt (-x2+2ifx)+X2-2ifX-f2+N2)1. 

dx . 
x2 - 2ifx - f 2 + 0 2  
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(4 

3 6 = xe-'" 

FIGURE 6. (a) Contour integral for the branch points at s = * i f .  ( b )  Substitutions 
around cut at s = if. 

For large t the major part of the integral is contributed by values of x near the origin, 
owing to the rapid decrease in e-xt with increase in x. Hence the leading-order term 
in I, as t + 00 can be found by finding the first-order term in the integrand as x+O. 
In this limit then 

ei(ft+n/4) 

(A 5 )  N- & * 

The contribution from the branch point at s = -if can be found by changing i to - i 
in (A 5 )  which gives 

e-i( ft+n/4) 

(A 6) 
t: 12 - 

The total contribution of the branch points s = f if is then the sum of I, and I, and 
has behaviour cos (ft +in)/& for large t .  This represents a decaying, non-propagating 
oscillation at the inertial frequency. Similarly, it can be shown that the branch at 
s = f iN represent a decaying oscillation a t  the buoyancy frequency with behaviour 
sin ( f t+ in) / t i .  
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